Non-MSE Data Compression for Emitter Location for Radar Pulse Trains
نویسندگان
چکیده
This paper ties together and extends several recent results we have presented. We previously showed: (i) the usefulness of non-MSE distortion criteria in data compression for time-difference-of-arrival (TDOA) emitter location (SPIE 2001 & 2002), and (ii) the ability to exploit redundancy between radar pulses in a joint TDOA/FDOA (frequency-difference-of-arrival) location scheme (SPIE 2001 & 2002). In (ii) we showed how to compress radar signals by gating around the detected pulses and then putting the pulses into the rows of a matrix which is then compressed through use of the SVD; this approach employed a purely MSE distortion criterion. An open question in this approach was: Is it possible to eliminate some of the pulses from the pulse matrix to increase the compression ratio without significantly sacrificing location accuracy? We resolve this question by applying our proposed non-MSE to the FDOA accuracy and finding the optimal set of pulses to remove from the pulse matrix. The removal of pulses is shown to have negligible impact on the FDOA accuracy but does degrade the TDOA accuracy from that achievable using the SVD-based compression without pulse elimination. However, we demonstrate that the SVD method includes an inherent de-noising effect (common in SVD-based signal processing) that provides an improvement in TDOA accuracy over the case of no compression processing; thus, the overall impact on TDOA/FDOA accuracy is negligible while providing compression ratios on the order of 100:1 for typical radar signals.
منابع مشابه
Data compression using SVD and Fisher information for radar emitter location
† Correspondence: [email protected] Abstract: This paper presents a data compression method that can achieve a very large compression ratio for radar pulse trains that are to be used for time-difference-of-arrival/frequency-difference-ofarrival (TDOA/FDOA) multiple-platform emitter location; this method exploits pulse-to-pulse redundancy to get a compression ratio much higher than possible...
متن کاملData Compression via Pulse-to-Pulse Redundancy for Radar Emitter Location
An effective method for geolocation of a radar emitter is to intercept its signal at multiple platforms and share the data to allow measurement of the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA). This requires effective data compression. For radar location we show that it is possible to exploit pulse-to-pulse redundancy. A compression method is developed tha...
متن کاملPulse Extraction for Radar Emitter Location
Two related data compression methods for radar signals are described and analyzed. The methods use the singular value decomposition (SVD) of a data matrix containing one pulse in each row to exploit pulseto-pulse redundancy. By using a rank-one approximation to the data matrix it is possible to achieve compression ratios typically of the order of several 10’s and sometimes over 150:1 for typica...
متن کاملNon-MSE Wavelet-Based Data Compression for Emitter Location
The location of an emitter is estimated by intercepting its signal and sharing the data among several platforms to measure the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA). Doing this in a timely fashion requires effective data compression. A common compression approach is to use a rate-distortion criterion where distortion is taken to be the mean-square erro...
متن کاملInteger Optimization Methods for Non-MSE Data Compression for Emitter Location
The location of an emitter is estimated by intercepting its signal and sharing the data among several platforms to measure the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA). Doing this in a timely fashion requires effective data compression. A common compression approach is to use a rate-distortion criterion where distortion is taken to be the mean-square erro...
متن کامل